Selection Of Forecasting Methods For Baby Products To Accurately Predict Sales (Case Study at PT ABPI Jakarta Branch)
Keywords:
Forecasting, Sales, Accuracy benchmark, Naive approach, Simple Moving Average, Linear Regression, Simple Exponential SmoothingAbstract
Rapid business growth faces the main challenge of adjusting production to fluctuating market demand. The mismatch between production volume and demand can cause various problems, such as overproduction resulting in waste of resources, underproduction causing the inability to meet market demand on time. This study aims to determine the most accurate forecasting method for the NSP-1006 Sumo Round Bottle Bpa Free 240 ml, NSP-3006 Sumo Round Bottle BpaFree 50 ml, 3-2103-Mh Bottle 3 Function 150 cc, TS-3S Accessories 3-tier milk container, and F-338 Baby Training Cup 3 in 1 Accessories. The research method uses descriptive quantitative. The analysis method used is naive approach, simple moving average, linear regression, simple exponential smoothing. The accuracy benchmark usesMean Absolute Deviation (MAD), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE). Data collection techniques use primary data and secondary data. The results of the study show that the NSP-1006 SumoRound Bottle Bpa Free 240 ml has an accurate forecasting method which is the linear regression method, the NSP-3006 Sumo Round Bottle Bpa Free 50 ml has an accurate forecasting method which is the linear regression method,the 3-2103-Mh Bottle 3 Function 150 cc has an accurate forecasting method which is the naive method, the TS-3S 3-tier milk container accessories have an accurate forecasting method which is the naive method, and the F-338 Baby Training Cup 3 in 1 accessories have an accurate forecasting method which is the linear regression method.
Downloads
References
Ahmad, F. (2020). Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT X. JISI: Jurnal Integrasi Sistem Industri 7(1), 1-9.
Audinasyah, C. S., & Solehudin. (2024). Sistem Forecasting Perencanaan Produksi dengan Metode Single Exponential Smoothing Pada Home Industry Tempe Putera Sejahtera. Jurnal Ekonomi dan Manajemen Teknologi 8(3), 845-853.
Bilaffayza, E. S., Wahyudin, W., & Herwanto, D. (2023). Peramalan Permintaan Metode Moving Average dan Linier Regression dalam Memprediksi Produksi Produk Disc Brake K93 (Studi Kasus PT United Steel Center Indonesia). Jurnal Rekayasa Sistem dan Industri 10(01), 32-38.
Choi, J. G., Zhang, Y. W., & Nadzri, N. I. (2022). A Review of Forecasting Studies for the Restaurant Industry: Focusing on results, contributions and limitations. Global Business & Finance Review 27(2), 61-77.
Gesi, B., Laan, R., & Lamaya, F. (2020). Manajemen dan Eksekutif. Jurnal Manajemen 3(2), 51-66.
Hamirsa, M. H., & Rumita, R. (2022). Usulan Perencanaan Peramalan (Forecasting dan Safety Stock Persediaan Spare Part Busi Champion Type RA7YC-2 (EV-01/EW-01/2) menggunakan Metode Time Series pada PT Triangle Motorindo Semarang. Industrial Engineering Online Journal, 11(1), 1-10.
Heizer, J., Render, B., & Munson, C. (2021). Principles of Operations Management Sustainability and Supply Chain Management Tenth Edition Global Edition. England: Pearson.
Herawati, S., Prastiti, N., & Imamah. (2024). Forecasting Bisnis Teori dan Penerapannya.
Tasikmalaya: Rumah Cemerlang Indonesia.
Hyndman, R. J., & Athanasopoulos, G. (2019). Forecasting Principles and Practice. Rusia: Otexts.
ikpi. (2024). ikpi.or.id. Retrieved from ikpi.or.id: https://ikpi.or.id/industri-manufaktur- indonesia-tunjukkan-pertumbuhan-positif-di-tengah-tantangan- global/#:~:text=Kementerian%20Perindustrian%20(Kemenperin)%20mengumumkan
%20bahwa%20pada%20tahun,pada%202023%20dan%2018%2C34%20persen%20pa da%202022.&text=Ang
Kaehler, B., & Grundei, J. (2019). HR Governance A Theoritical Introduction. Berlin: Springer.
Kumila, A., Sholihah, B., Evizia, Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naive dalam Peramalan Data Kemiskinan. Jurnal teori dan Aplikasi Matematika 3(1), 65-73.
Laksono, I. D., Santi, I. H., & Chulkamdi, M. T. (2023). Implementasi Metode Single Exponential Smoothing untuk Memprediksi Tingkat Penggunaan Bahan Produksi Roti dan Kues (Studi Kasus: CV. Dea Cake and Bakery). Jurnal Mahasiswa Teknik Informatika 7(5), 3229-3236.
Lusiana, A., & Yuliarty, P. (2020). Penerapan Metode Peramalan (Forecasting) pada Permintaan ATAP di PT X. Industri Inovatif-Jurnal Teknik Industri ITS , 11-20. machinevision. (2024). www.machinevision.global. Retrieved from
www.machinevision.global: https://www.machinevision.global/post/pertumbuhan- industri-manufaktur-di-tahun-2024
Nunan, D., Briks, D. F., & Malhotra, N. K. (2020). Marketing Research: An Applied Insgiht Sixth Edition. Harlow: Pearson Education.
Rahma, D. L., & Winursito, Y. (2024). Analisis Perencanaan Pengelolaan Persediaan Urea dan Garam dengan Metode Forecasting pada PT. Energi Agro Nusantara. Jurnal Teknik Mesin, Industri, Elektro Dan Informatika 3(1), 61-82.
Ramdani, D. A., & Azizah, F. N. (2019). Analisis Perbandingan dengan Peramalan Permintaan Pelumas PT XYZ dengan Moving Average, Exponential Smooting dan Naive Method. Seminar Nasional Official Statistics , 1000-1010.
Robbins, S. P., & Judge, T. (2020). Organizational Behavior, 18th Edition. USA: Pearson.
Rudi, W. S., Pranoto, Y. A., & Ariwibisono, F. X. (2023). Penerapan Metode Regresi Linier dalam Peramalan Penjualan Kue di Toko Karya Bahari Samarinda Berbasis Website. JATI (Jurnal Mahasiswa Teknik Informatika) 7(4), 2451-2457.
Suganda, F. R., & Purnamasari, I. (2022). Analisis Wilayah Manajemen Operasional pada UMKM Bintang Langit. Journal of Knowledge Management 16(1), 1-12.
Sugiyono. (2022). Metode Penelitian Kuantitatif. Bandung: Alfabeta.
Taifur, S. I., & Imaroh, S. T. (2020). Forecasting Planning and Procurement Strategy of Raw Material Using Material Requirements Planning Methode. Dinasti International Journal of Digital Business Management 1(4), 593-607.
Yulian, I., Anggraeni, D. S., & Aini, Q. (2020). Penerapan Metode Trend Moment dalam Forecasting Penjualan produk CV. Rabbani Aysisa. Jurnal Teknologi dan Sistem Informasi 6(2), 193-200.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Business, Economics, Law, Communication, and Social Sciences

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



